Introduction to Artificial Intelligence

 Artificial  Intelligence

what is Artificial Intelligence 

Artificial  Intelligence  includes  the and special e  simulation  process  of  human  intelligence  by  machines computer  systems.  The  examples  of  artificial  intelligence  include  learning, reasoning  and  self correction.  Applications  of  AI  include  speech  recognition,  expert systems,  and  image  recognition on  and  machine  vision. Machine  learning  is  the  branch  of  artificial intelligence,  which algorithms that  can  learn  any  new data  and  data patterns. Let  us deals  with  systems  and focus  on  the  Venn  diagram  mentioned  below  for  understanding  machine  learning and deep  learning  concepts.





Machine  learning  includes  a  section  of  machine  learning  and  deep  learning  is  a  part  of machine  learning.  The  ability  of  program  which  follows  machine  learning  concepts  is  to improve  its  performance  of  observed  data.  The main  motive  of  data  transformation  is  to improve  its  knowledge  in  order  to  achieve  better  results  in  the  future,  provide  output  closer to  the  desired  output  for  that  particular  system.  Machine  learning  includes  “pattern recognition”  which  includes  the  ability  to  recognize  the  patterns  in  data. The  patterns  should  be  trained  to  show the  output  in  desirable  manner. Machine  learning can  be trained in two different way

1:Supervised  training

2:Unsupervised  training

                               Supervised Learning 

Supervised  learning  or supervised  training  includes  a  procedure  where  the  training  set  is given  as  input  to  the  system wherein resents the , each  example  is  labeled  with a desired output  value. The  training  in  this  type  is  performed  using  minimization  of  a  particular  loss  function,  which rep output  error  with  respect to the desired  output  system. After  completion  of  training,  the  accuracy  of  each  model  is  measured  with  respect  to disjoint  examples  from training  set,  also  called the validation  set. 




The  best  example  to  illustrate  “ information  included  in  them Supervised  learning”  is  with .  Here,  the user can  train a bunch  of  photos  given  with a model  to  recognize  new  photos


Unsupervised learning

In  unsupervised  learning  or  unsupervised  training,  include  training not  labeled  by  the  system to  which  class  they  belong share  common  characteristics, and changes examples,  which .  The  system  looks  for  the are data,  which them  based  on  internal  knowledge  features. This  type  of  learning  algorithms are  basically  used  in  clustering  problems.

The best  example  to  illustrate  “Unsupervised  learning”  is  with bunch  of  photos  with  no information  included  and  user  trains  model  with  classification  and  clustering .  This  type  of training  algorithm works  with  assumptions  as  no  information  is  given.


 Machine Learning

Machine learning is the art of science of getting computers to act as per the algorithms designed and programmed. Many researchers think machine learning is the best way to make progress towards human-level AI. Machine learning includes the following types of patterns:

Supervised learning pattern

✦Unsupervised learning pattern


Deep Learning

Deep learning is a subfield of machine learning where concerned algorithms are inspired by the structure and function of the brain called artificial neural networks.

All the value today of deep learning is through supervised learning or learning from labelled data and algorithms.

Each algorithm in deep learning goes through the same process. It includes a hierarchy of nonlinear transformation of input that can be used to generate a statistical model as output.

Consider the following steps that define the Machine Learning process:

⬥ Identifies relevant data sets and prepares them for analysis. 

⬥ Chooses the type of algorithm to use.

⬥ Builds an analytical model based on the algorithm used. 

⬥ Trains the model on test data sets, revising it as needed. 

⬥ Runs the model to generate test scores.

Difference between Machine Learning and Deep learning

In this section, we will learn about the difference between Machine Learning and Deep Learning.







let's stop here subscribe to get latest post in artificial intelligence tutorials 

thank you !




Comments

Popular Posts